FV4005 Stage I & II

United Kingdom (1950-56)
Anti-tank SPG Prototype – 2 built

In the early 1950s, the opening years of the Cold War, the western powers were highly concerned with the amount of powerful armor available to the USSR.

In answer to this, the British military developed a ferocious new anti-tank gun, the 183 mm (7.2 in) L4. The race was on to find a suitable mount for this monstrous weapon. It was first proposed to be used as part of the FV215 project. This self-propelled gun (SPG) design was based on the FV200 Universal tank concept. This vehicle, however, did not go further than the mock-up stage.

FV 214 Conqueror

Designers tried again, this time with a proposal to mount the gun on the chassis of Britain’s trusty new Main Battle Tank, the Centurion. This vehicle would go under the project title of FV4005.

Design and Development

The FV4005 was a separate project from the Centurion based vehicle, the FV4004 Conway, armed with the 120 mm (4.72 in) L1 gun. The two projects were not related but had the same goals. The FV4005 was fitted with a much larger gun.

Vickers-Armstrong was in charge of the development of the tank. The Centurion chassis chosen for the project was that of the Mk.III. The platform for the gun was made to fit perfectly into the existing turret ring of the hull. Only slight alterations were made to the chassis. A large recoil spade was added to the rear of the vehicle and an equally large travel lock, or “Gun-Crutch” as the British called it, was added to the front.

The recoil spade helped to keep the vehicle in place while firing, meaning the gunner didn’t have to re-adjust after every shot. The travel lock was used to keep the gun from swaying while the vehicle was moving, helping to reduce stress on its components.

Britain’s Biggest Boom-Stick, the 183mm L4

In 1950, work started on the Ordnance Quick Firing 183 mm (7.2 in) L4 gun. At the time, it was the largest and most powerful tank gun in the world. The cannon was based on the 183 mm (7.2 in) BL 7.2 inch howitzer, a WWI era weapon. The gun itself weighed a mighty 4 tons and when fired it produced the equivalent of 87 tons of recoil force.

The L4 was designed to be chambered for only one type of ammunition, HESH (High Explosive Squashed Head). It was separately loading ammunition. The projectile was loaded first followed by the correct propulsion cartridge. Each shell weighed a combined total of 104.8 kg (231 lbs). A shell of this size understandably produced a substantial amount of fumes and smoke inside of the fighting compartment. As such, a large fume extractor was added to the barrel, a relatively new feature at the time.

The 183 mm was tested in live fire trials against a Centurion and a Conqueror. In 2 shots, the 183 blew the turret clean off the Centurion and split the mantlet of the Conqueror in half. In total, the gun fired 150 shells.

Stage I

The FV4005 Stage I was a relatively simplistic vehicle, serving as little more than a test-bed for the 183 mm L4 gun. The hull of a Mk.III Centurion tank was chosen for the project. The gun was mounted on a platform in the turret ring, completely open to the elements devoid of any armor.


The Stage I, possibly in Workshop 5 (the so-called secret shed at Elswick) – Photo: warspot.ru

The L4 was expected to have a rate of fire of 6 rounds per minute. As mentioned above, the separately loading 183mm HESH ammunition equipped to the FV4005 weighed a combined total of 104.8 kg (231 lbs) each. As such, the gun would require 2 loaders to service the weapon effectively. 6 rounds a minute would still be a hopeless fantasy, however.

To combat this, in an attempt to ease and quicken the loading process, Vickers-Armstrongs developed a mechanized ammunition feed system, similar to that used on the 104-mm Green Mace anti-aircraft gun. Contrary to popular belief, this was not a traditional auto-loader. It was simply a loading assistance device that would help to align the shells and propellant with the breach. The mechanism did not include a rammer.*

Testing highlighted stability issues with the platform when the gun was fired. It was also surmised that the open, unarmored fighting compartment, necessitated by the loading-system, was not worth the price in crew safety. As such, work began on re-working the gun platform.

 

Stage II

The FV4005 Stage II was the final form of the project. It was designed and built in 1955. The open gun platform was replaced with a large, box-like turret. The loading assistance device was also deleted, in favor of more traditional loading. With the addition of the large, approximately 2-meter high turret, the FV4005 weight climbed to 50 tons.


The FV4005 during trials in 1956. Note the driver in the hull, and the commander at the very top of the turret. Photo: warspot.ru

Despite being an extremely prominent target, the turret armor was only 14 mm (0.55 in) at its thickest. This was easily penetrable even by large caliber machine guns rounds. It also only had enough space to store 12 rounds. These rounds were stored in racks of 6 on each side of the large bustle.

The turret housed 4 crew members. These were the commander on the forward left, gunner on the front right and 2 loaders positioned behind the gun. On the left of the gun, in a small box on the cheek, was a coaxial .30 cal (7.62 mm) machine gun. This was most likely used for ranging rather offensive/defensive fire. There was a large door in the rear of the turret bustle for crew access and ammunition re-supply. The driver was located in the standard position in the hull.

It should be noted that the lack of armor was intentional. This vehicle was designed to engage at long-range, shoot and re-position. Flexibility was slightly hampered by the turret, however. In theory, it was fully traversable. On uneven ground, this was not recommended due to balancing issues with the gun. As such, the vehicle only really had a 90 degrees arc of fire to the left and right.

A rear view of the vehicle. Note the recoil spade and the box above it. This box holds the winch to raise and lower the spade – Photo: Ed Francis

Fate

January 1957 marked the end of the road for the 183 mm armed SPGs, despite admirable performance during trials. The intended role of the vehicles had been overtaken by increasing development of ATGMs (Anti-Tank Guided Missiles). These granted the same, if not better, anti-armor capabilities, with the experiments ultimately culminating in the Malkara and Orange William missile systems.

Work would continue on the gun. Had it have been adopted, the L4 would’ve been succeeded by the 180mm “Lily White”. This only got as far as conceptual stages, however.

The FV4005 Stage II is the only one of these 183mm armed vehicles to survive to this day. The turret is original, but it was mounted on a spare Mk.VIII Centurion hull, not the original it was trialed with. It is missing the recoil spade and travel lock. This “Cut-and-Shunt” representation of the vehicle now sits as a “gate-guardian” at The Tank Museum, Bovington, alongside an M4 Sherman. Its predecessor, the FV4004 Conway is safe and sound in the VCC (Vehicle Conservation Center) at the site.

The 4005 as it stands today out side the Bovington Tank Museum – Photo: warspot.ru

FV4005 Stage II Specifications

Dimensions (L-W-H) 7.82 (without gun) x 3.39  x 3.6 m
(25’7″ x 11’1″ x 11’8”)
Total weight 50 tons
Crew 5 (driver, gunner, commander, x2 loaders)
Propulsion Rolls-Royce Meteor; 5-speed Merrit-Brown Z51R Mk. F gearbox 650 hp (480 kW), later BL 60, 695 bhp
Speed (road) Apx. 30 km/h (19 mph)
Armament QF 183 mm (7.2 in) L4 Tank Gun
.30 Cal. (7.62 mm) machine gun.
Armor 120 mm frontal hull armor. Turret 14mm all over.

Links, Resources & Further Reading

Ed Francis
Archives, The Tank Museum, Bovington, England
Key Publishing Ltd., The Big Gun Centurions, Classic Military Vehicles. Written by David Fletcher.
An article on the FV4005 by Yuri Pasholok on warspot.ru (Russian)

Nashorn 8.8cm SPG

Nazi Germany (1943-45)
Tank Hunter – 394 built

A Tank Hunter Fielding the Feared 88mm

After the first encounters with tanks like the T-34 and the KV-1 in the summer of 1941, the OKH was well aware that it had to quickly devise a response, in order to have the necessary firepower when needed. The long-period development projects, like the Panther and Tiger, were already on the agenda, but faster ways of fielding this kind of firepower were already available in the shape of self propelled guns, already tested and built since 1940.

This photograph of a Nashorn 88mm self-propelled gun was taken in January 1944.

These were proven solutions, fast-built at low cost. Older tank hunters equipped with the Pak 40 75 mm (2.95 in) gun, like the Marder, were barely sufficient against the KV-1, so the adoption of the most efficient piece in the German ordnance came as a necessity. Following the specifications of 1942, a tank hunter was planned to carry the ubiquitous 88 mm (3.46 in) gun. It was to be built by Alkett (Altmärkische Kettenwerke GmbH) in Berlin.

Design

Alkett choose the Geschützwagen III/IV chassis to mount the heavy 8,8 cm Panzerabwehrkanone 43/1 L/71 (Pak 43/1), a lightweight version of the standard German AA gun, also mounted on the Tiger II tank.

The German Nashorn self propelled 88mm gun had a five man crew.

The chassis was based on the Panzer IV, with the same suspension configuration with four bogies, each with two pairs of rubberized roadwheels, idlers at the rear and drive sprockets at the front, but lengthened and strengthened.

The hull armor was 30 mm (1.18 in) at the front, 20 mm (0.79 in) on the sides and 15 mm (0.59 in) for the rear plate. The engine was a Maybach HL 120 TRM Ausf.A V12 producing 300 hp@3000 rpm, with 11,867 L of displacement.

It was coupled with a ZF (Zahnradfabrik Friedrichshafen AG) SSG 77 Aphon transmission of the synchromesh manual type, with 6/1 gears. The driver had a Daimler-Benz/Wilson clutch/brake with a Fichtel & Sachs La 120 HDA dry clutch, triple disc.

The gun and its bearings were placed at the rear of the chassis, surrounded by an open-topped superstructure, which had a 15 mm (0.59 in) front and 10 mm (0.39 in) sides to protect the crew (only against shrapnel and small arms fire).

There was a 15 mm thick (0.59 in) gun shield inside the casemate, acting like an internal mantlet and allowing some traverse, 15° to either side and between -5° in depression and +15° in elevation. To balance the weight, the engine was shifted from its rear position to the center.

The gun was semiautomatic, with an horizontal sliding block, manual traverse and elevation. The casemate and hull could carry from 24 to 40 rounds, crammed into any space available, of the Pzgr.39 (Armor Piercing Composite Ballistic Cap) tungsten-core type, which could penetrate 132 mm (5.2 in) at 2000 m.

There was no secondary armament except one 7.92 mm (0.31 in) MG 34 or MG 42 machine-gun carried inside the vehicle, with 600 rounds in store. The gun was aimed by a gunner’s sight with a 5x magnification, 8° field of view, and had an indirect fire sight Aushilfsrichtmittel 38 with a 3x magnification, 10° field of view. There was also a FuG Spr.f radio.

Production & Variants

The model, called “Hornisse” (Hornet) initially, was presented to Hitler in October 1942, approved, and production began in January 1943 as the 8,8 cm Pak 43 (L/71) auf Fahrgestell Panzerkampfwagen III/IV (Sf) or 8,8cm Pak 43 (L/71) auf Geschützwagen III/IV (Sd.Kfz.164).

In May 1943, a new model was introduced, featuring a new driver’s front armor plate, 15 mm (0.59 in) uniform gun shield and some other minor differences.

This new version represented the bulk of Alkett’s production until early 1944, when it was slowed but not stopped. Some models received the wider “Ostketten” tracks, adapted to the Russian winter and autumn, making the overall width rise to 3.17 m (10ft4), instead of 2.95 m (9ft8).

Hitler renamed it “Nashorn” (Rhinoceros) in 1944, and this name stuck to the series ever since. Some authors, however, make the distinction between the early and late series using the two names. By 1944, new tank hunters, with a lower silhouette and much better protection, like the Jagdpanther, were favored by the OKH.

The bulk of the 494 vehicles produced were delivered in 1943 (345), however the remainder were delivered discontinuously, 133 from February to November 1944, and only 16 from January to March 1945.

The Sd.Kfz.164 Nashorn in Action

Nashorn 88mm self-propelled gun in winter whitewash livery on the Eastern Front. The crew are loading ammunition.

When entering service, the Hornisse was issued to six of the newly-formed heavy antitank battalions, the schwere Panzerjäger Abteilungen 560, 655, 525, 93, 519 and 88, each with 45 vehicles. The main gun was derived from the regular 88 mm (3.46 in) Pak 43, one of the most effective anti-tank guns of the war, and later used, with few modifications, on the Ferdinand/Elefant, Tiger II and Jagdpanther.

In addition, the Panzergranate 40/43 tungsten carbide–cored round could defeat 190 mm (7.48 in) of RHA at a 30° angle at 1,000 m. This allowed the Hornisse to engage enemy units while staying out of range themselves. So there was no need for armor protection. It was reported several times that T-34s were destroyed at distances of around 4000 meters, in almost direct fire. Usually, the prey were the “hard-skinned” KV, IS-2, SU-152, ISU-122 and ISU-152.

This made the Nashorn the first of the German alpha predator bred for the Eastern Front. The Sd.Kfz.164 was first blooded at the Battle of Kursk, and performed quite well, engaging heavies like the KV-1. Its long-range ability was found particularly adapted to the open and flat landscapes of Russia. Added to this, the open fighting compartment gave excellent peripheral vision compared to an enclosed turret.

After Kursk, three of these Abteilungen, the 560 sPzJagAbt, 655th sPzJagAbt and 525 sPzJagAbt, were sent to Italy. They again proved to be successful tank destroyers. Six more schwere Panzerjager Abteilungens (560, 655, 525, 93, 519 and 88), each equipped counting 30 Nashorns, saw service on the Eastern Front, Normandy and Italy. Each Abteilung was composed of a command company and 2-3 companies (14-17 tank hunters each) with 4 platoons each.

There was a Nashorn ace, platoon commander of 1st company, sPzJagAbt 519, Junior Lieutenant “Tiger of Vitebsk” Albert Ernst. On December, 23, 1943, he destroyed 14 Soviet tanks in a single day with 21 rounds near Vitebsk. In December 1943, he destroyed 19 more enemy tanks and was awarded the Knight’s Cross.

Lieutenant Beckmann from sPzJagAbt 88, destroyed a Soviet IS-2 at the amazing distance of 4600 meters near Marzdorf in March 1945. A Nashorn from the 2nd Company, Abteilung 93 destroyed the only M26 Pershing in Europe, at 250 meters, with the first shot, in Niehl, north of Cologne, March 6, 1945.

Czechoslovakian Army Nashorns

Surviving Nashorns self-propelled guns were used by the Czechoslovakian Army after WW2. Twelve vehicles underwent renovation and entered service in 1950. They were officially called “Samohybné děla Nashorn (88 mm ShPTK vz. 43/41N, SD-88). They were later withdrawn from Army service and presumably scrapped.
Czechoslovakian Army records recorded the original German production chassis number (Fgst.Nr) of the Nashorns that entered their service.

German Fahrgestellnummer 310004, date in service 2nd June 1950,
Tactical unit number 121, army registration number 79.671

German Fahrgestellnummer 310077, date in service 2nd June 1950,
Tactical unit number 24, army registration number 79.672

German Fahrgestellnummer 310032, date in service 2nd June 1950,
Tactical unit number 184, army registration number 79.973

German Fahrgestellnummer 84494, date in service 2nd June 1950,
Tactical unit number 182, army registration number 79.974

German Fahrgestellnummer 84431, date in service 2nd June 1950,
Tactical unit number 169, army registration number 79.975

German Fahrgestellnummer 310294, date in service 2nd June 1950,
Tactical unit number 175, army registration number 79.976

German Fahrgestellnummer 84431, date in service 2nd June 1950,
Tactical unit number 98, army registration number 79.977

German Fahrgestellnummer 310093, date in service 2nd June 1950,
Tactical unit number 190, army registration number 79.978

German Fahrgestellnummer 84433, date in service 2nd June 1950,
Tactical unit number 47, army registration number 79.979

German Fahrgestellnummer 310437, date in service 2nd June 1950,
Tactical unit number 97, army registration number 79.980

German Fahrgestellnummer 310398, date in service 2nd June 1950,
Tactical unit number 69, army registration number 79.981

German Fahrgestellnummer 84432, date in service 2nd June 1950,
Tactical unit number 110, army registration number 79.982

Sd.Kfz.164 Nashorn Specifications

Dimensions (L-W-H) 8.44m (7.26m without gun) x 2.95m x 2.65m
27’8″ (23’10” without gun) x 9’8″ x 8’8″ ft.inch
Total weight, battle ready 24 tons (52,910 lbs)
Armament 88 mm (3.46 in) L/60 Pak 43/1
Armor Hull 20-30 mm (0.78-1.18 in)
Sides 10-15 mm (0.39 – 0.59 in)
Crew 4/5 (driver, commander, gunner, loader)
Propulsion Maybach 11.9 liter V-12 gasoline 300 PS (296 hp, 221 kW), 12 hp/t
Speed 42 km/h (26 mph)
Suspension Leaf spring
Range and consumption 235 km (146 mi), 470 l/100 km
Total production 394

Links and Resources about the Sd.Kfz.164 Nashorn

The Nashorn on Wikipedia
Tank-Hunter.com
The Nashorn on Achtung Panzer
Czechoslovakian Army records

BTR-94

Ukraine (1999)
APC – 50 built

From the BTR-80

The BTR-94 (Bronetransporter, model 1994) is an Ukrainian 8×8 amphibious APC proposed solely for export and produced in 1999-2000.
It was largely based on the BTR-80 produced at Arzamas (GAZ), Nizhniy Novgorod. After the split between Russia and Ukraine, the former launched a brand new model, the BTR-90, while the Ukrainian army chose to develop a new version similar to the BTR-82 (an IFV modernization of the BTR-80). At that time Ukraine had 456 BTR-80/82 and variants in service. In fact 50 of these were modified by the Malyshev Factory with a new turret, gaining the denomination BTR-94 after their initial design phase (1994), in active service in 2000. The BTR-94 was solely exported, to Jordan (which passed on its vehicles to Iraq later).

Design

Externally, the BTR-94 very much looked like a BTR-82. The hull, drivetrain and most equipments are still similar to those used by the mass-produced BTR-80, but the turret ring was enlarged to house a brand new BAU-23×2 turret. Indeed, this remotely operated turret uses a powerful twin 23x152mm 2A7M cannon (the same used on the ZSU-23-4 Shilka SPAAG), coupled with a 7.62 mm PKT machine gun. The twin arrangement procures a maximal rate of fire of 850 rds/min., and there are 200 rounds in store whereas The PKT coaxial machine-gun has 2,000 rounds in store. The 2A7M is assisted by the combined optical sight 1PZ-7-23. This turret could be mounted as proposed by the manufacturer, on the BTR-70 or even Ratel IFV. In addition there is a target illumination device, a radar antenna for ground and air target detection, upgraded targeting devices, and for concealment two banks of three smoke dischargers are mounted either side of the turret.

The compartmentalization remains unchanged with a crew of three, driver, commander and gunner, plus ten infantrymen exiting from the side doors, the usual BTR-60/70/80 lineage feature. Amphibious characteristics and full NBC protection remains standard, the armor layout also, but the level of protection could have been upgraded (it is classified), although externally there are no signs of add-on armor and the overall known weight of 13.8 tons. The multi-fuel diesel powerpack is a dependable V12 conceived in Ukraine which develops 300 hp, already used on the BTR-80UP. In addition there is a centralized tire inflation system to cope with soft ground. Ground clearance is 47 cm.

The BTR-94 in Service

So far, the BTR-94 was not adopted by the Ukrainian Army but delivered instead to Jordan, receiving them in 1999 to February 2000, together with a supply spare part contract. In 2004 they were donated to the Iraqi government to beef-up the Iraqi new Army Mechanized Police Brigade. Actually, only the BTR-3 was mass-produced and is in service with the Ukrainian Army (and was largely exported). The BTR-94 remains a one-off intermediate export design to take advantage of the large availability of the BTR-80, on par with the BTR-80UP conceived with Poland for export.

Iraqi BTR-94

Links & sources

The BTR-94 on globalsecurity.com
The BTR-94 on wikipedia
Ukrspecexport.com website
Morozov (KMDB) website about the BAU-23×2 weapons station and full specs.
Also militaryfactory.com, military-today.com.

BTR-94 Specifications

Dimensions 7.65 x2.90 x2.80 m
Total weight, battle ready 13.6 tonnes (15 short tons)
Crew 3+10 (driver, Cdr, gunner +10 infantry)
Propulsion V12 Diesel 300 hp (), 18.3 hp/ton
Suspension 8×8 independent coil springs
Speed (road/water) 85/9 km/h
Range 600 km (xx mi)
Armament Twin 23x152mm 2A7M cannon, coax PKT 0.8mm LMG
Armor Classified
Total production 50 in 2000

Char B1/B1 Bis

 France  (1935-40)
Heavy Tank – 369 built

A Long-lasting Project

The Char de bataille was Col. Estienne’s concept. The French “father of tanks” wrote a memorandum (Mémoire sur les missions des chars blindés en campagne) in 1919, full of war experience, tactical reports and theoretical concepts of mechanized warfare, notably the proper use of different types in the offensive. The “char de bataille” (“battle tank”) was a heavy tank, near to the “char de rupture” or “breakthrough tank”, but the former was more a dual-purpose (infantry support and antitank) machine than the “char de rupture”. The latter concept gave birth to huge the FMC F1, with the sole purpose of terminating fortifications.

Abandoned Char B1 bis after the German invasion of France in May, 1940.

This duality was at the very core of the idea, shaping the many prototypes which followed in response. In 1921, the project was studied by a commission led by General Edmond Buat. First specification was for a low-cost self-propelled artillery, 25 mm (0.98 in) of armor and some machine-guns in turrets. Maximum metric weight was 30 tons.

The project evolved and the machine-gun turret was equipped with an antitank 47 mm (1.85 in) gun. The main gun was a 75 mm (2.95 in) howitzer, in a low hull sponson. Industrial rivalry in the past had delayed several projects, including the FCM 2C, so Estienne was poised to create a formal agreement, submitted to the industrialists involved, free to share their plans, with the promise of no less 1000 orders.

The Army was then to choose between the projects and various patents to compose their model, built by all. The four companies involved in the project were Renault and Schneider (SRA and SRB), FAMH (Saint Chamond) and FCM (Forges et Chantiers de la Méditerranée) with the FCM 21.

The four projects, one for each company, were submitted to the commission on 13 May 1924 at Atelier de Rueil. The twenty kilometer test course proved too much for them, showing the haste of their conception. The commission, over the supervision of Estienne, choose the SRB as a base.

The SRB (Schneider and Renault project) weighed 18.5 tons, was 6 meters long (19.7 ft), with modified FT tracks, an antitank 47 mm (1.85 in) gun, Renault six-cylinder 180 hp engine, with hydraulic Naëder transmission from the Chaize company combined with a Fieux clutch and Schneider gear box, a speed of 18.5 km/h (11.5 mph) and a 370 l fuel tank giving a 370 km (230 mi) autonomy.

This prototype then received many modifications, including the 75 mm (2.95 in) howitzer, new Holt-type tracks, the FAMH suspension, track tension wheel and a small gangway to access to the engine, with 40 mm (1.57 in) armor.

Captured Char B1 bis heavy tank

Design of the B1

The design process of this modified SRB led to the 1926 “tracteur 30”. The plans were made by Schneider’s chief engineer, revised by the STCC (Section Technique des Chars de Combat). A mockup was built by Renault and three prototypes were to be built by the companies involved, with some modifications by the new 1926 “direction de l’infanterie”, changing it to a primarily infantry support tank. Modifications of the design included no AT weapon, lower speed, 22 tons max and radio for coordination.

SRA prototype

The three prototypes of the “B” serie (n°101, 102 and 103) were ready by 1929-30. They differed by their engine, clutch, transmission and served both for technological and tactical experiments, at the champ de Châlons, forming the “Détachement d’Experimentation” unit in 1931. They were extensively used in maneuvers until 1934, each time with some modifications by the Atelier de Reuil near Paris, to meet new requirements and army specifications. In the end, the B1 received its final turret, with the low velocity 47 mm (1.85 in), and coaxial Reibel machine-gun.

Like the 1924 prototypes, it had a very large track, inspired by earlier famous British models. Armor also protected the suspension and the hull was riveted. The Renault inline 6 cylinder 16.5 litre petrol engine was chosen, which provided 9.7 bhp/ton, the power was transmitted by a double differential steering system, 5 forward, 1 reverse gear. Suspension was in the form of bogies with a mixture of vertical coil and leaf springs. Both early and final turret designs (APX1) were one-man only.

Char B prototype

Production: The B1

Production started in 1935, with Renault building 182 Chars B, AMX -a Schneider subsidiary- 47, FCM 72 and FAMH 70. At 1.5 million francs apiece, it was by far the costliest tank ever built en masse. Consequently, the original order of 1000 was reduced to 400. This further increased the tension between the two doctrinal schools which had influence then, one professing the use of a few, heavily armored battle tanks, while the other advocated the use of swarms of light tanks. Almost ten light Renault tanks could be built for the price of a single B1. Despite all problems, monthly production reached 41 by May 1940, and when it ceased in June, 25, 369 has left the factory floor.

As the few, even more expensive and now largely obsolete FCM 2C was kept out of real operations, the B1 became the main French “char de rupture”, a specialized breakthrough tank in specialized units. Operational capabilities were limited by their high consumption, which in turn limited their range and condemned them to be used in strategic reserves. In fact they formed the “Divisions Cuirassées de Réserve” (DCR) with limited strategic flexibility, intended for the second phase of the assault.

The B1 had some shortcomings which had to be dealt with. An obvious lack of antitank firepower, with its low velocity L27/6 SA34 47 mm (1.85 in), which was only given APHE rounds (high explosive), capable of defeating 25 mm (0.98 in) of armor. The 75 mm (2.95 in) SA35 ABS L17.1 howitzer could fire HE and APHE rounds, only suitable against fortifications, with a poor traverse of only one degree. The aiming was given to the driver’s abilities with the Naëder hydraulic precision transmission.

It was served by the radioman and the commander, who was also given the task of aiming and firing the turret 47 mm (1.85 in) gun. Communication was assumed by an ER53 radio telegraphy set, which worked with Morse code only. There was a small corridor, right on the rear, giving access to the ammunition reserve, next to the engine. The main access door was on the right side. The suspension system was rather complicated, made of three main bogies, sprung by vertical coil springs, each supporting two others, with a pair of road wheels. Production of the B1 was very slow. Only 34 machines were delivered until July 1937. By then, there was serious consideration given to an upgrade, which led to the B1 bis.

The upgraded B1 bis and B1 ter

The B1 bis was a modernization of the type, with an emphasis on anti-tank capability and protection. The armor was uprated to 60 mm (2.36 in), and a new APX4 turret with a longer barrel (L/32) SA 35 47 mm (1.85 in) gun was mounted. To cope with the added weight (now 31 tons), a new engine was fitted, a V12 Renault capable of 307 bhp (229 kW). 35 of the first series were retrofitted with the new engine. Autonomy was limited to only 180 km (110 mi).

There had been some attempts of towing an extra 800 l fuel tank, but it never realized. At cruise speed, reserves were exhausted in just 6 hours. A larger left air intake was fitted. Ammunition storage was improved between the beginning and the end of the production, from 62 to 72 47 mm (1.85 in) rounds, but still, no AP shells. Production started in April 1937 and stopped in June 1940. By then, 377 had been delivered out of an order of 1144, but only 129 were ready in September 1939.

In exercises, the complex and advanced hydrostatic steering Naëder system proved difficult to use and costly, betrayed by other technical elements like a porous bronze housing and feeble seals causing significant losses of castor oil. The TSF was not practical, as the tanks needed to be at rest to communicate. No tactical coordination was possible on the move. The costly turret was slower to produce than the hulls and three B1 bis were ultimately put in service without turret, as gun carriages.

The B1 ter was a late attempt to radically improve the design. The main features were new 75 mm (2.95 in) armor welded with slopes to the hull, a new 350 bhp engine to deal with this added weight (36.6 tons) and some simplification in the design for mass-production in 1940, like the omittance of the Naëder transmission. Rearranged interior allowed a fifth crew member to be carried, as a mechanic. The main howitzer received better traverse, 5 degrees higher. Only two prototypes were ready by June 1940. Production never started.

The B1 had some additional flaws as well, which never helped its performances. High consumption issue, which was aggravated by any aiming of the main howitzer, was never solved. The absence of an efficient compass orientation and no internal communication system were also resented in operations. The one-man APX-1 turret was also cramped, ergonomics were poor, and the feebly armored cupola had inadequate means of vision. Plus, the barrel pointing device was quickly deregulated.

Many other issues were never solved because of the delays. The most serious was of course disastrous tactical management. B1s were “wasted” at individual defensive spots, many were simply outmaneuvered. But despite all this, the B1s were still, tank to tank, formidable machines, which proved very effective in single actions.

The B1 bis in action

Despite its obsolete features, low autonomy and speed, the B1 was hard to stop. Its most formidable assets were its huge armor and good firepower, then unmatched in the west. The 60 mm (2.36 in) frontal armor was sloped, which mean it was near 80 mm (3.15 in) effectively. There were no real weak spots, and this invulnerability helped the B1 to close on targets, then destroy them with the turret 47 mm (1.85 in) or the brute force of the howitzer HE shells.

Scuttled B1 bis at Beaumont, June 1940

For this reasons, the B1 was the Wehrmacht’s most feared enemy tank, a mechanized nightmare which caused heavy casualties by itself during the few fights in which it was engaged. The Germans never experienced such losses in tank to tank combat until the fall of 1941, when encountering the Soviet KV-1 and T-34. The Panzer I and II were absolutely harmless to the B1, and the Panzer III, with its thin armor and 37 mm (1.46 in) gun, presented no serious threat to the French heavy tank. As for the Panzer IV, it had only 20 mm (0.79 in) protection (Ausf. A).

It’s standard gun was the low velocity, short barrel 75 mm (2.95 in) KwK 37, which was only effective at short range. For this reasons, the Panzer IV barely presented a real threat except in close, real time coordination with other vehicles. The same could be said about most German antitank guns of the time. The famous standard-issue “door-knocker” Pak 37 and even the Pak 40 were harmless. Contrary to common opinion of the time, the large ventilation exhaust panel was indirectly 55 mm (2.17 in) strong and never presented a weak point.

When the war broke out in September 1939, there were perhaps 180 operational B1 and B1 bis in all. They were used for the Sarre offensive, a short-lived burst without serious opposition, with a massive force of 41 divisions and 2400 tanks. The aim was to distract and divert German forces from Poland, France’s ally. After slowly penetrating 8 km (5 mi) into enemy territory, the entire force withdrew by order of general Gamelin into the security of the Maginot line. Several officers, including Henri Giraud and Charles de Gaulle, wildly protested. In effect, the Germans would have been in great danger and the Rhine was in reach. But Gamelin then was so confident about the famous fortified line, that he saw any large-scale offensive to be a useless waste of material and men.

During the “Phoney War”, all B1s were gathered in massive infantry support divisions, the “division cuirassés de réserve” or DCR, which were tactically committed in the second phase of any assault, the first being led by cavalry tanks like the SOMUA S35. No tanks were sent in Norway, but the real deal began in May 1940.

Three DCR, comprising 69 tanks each, were mobilized. Part of the 37th Bataillon de Chars de Combat, which comprised only B1s, were all rearmed with long-barrel SA 35 guns in May 1940 (turret designation APX1A). After the German invasion began, four new DCR of 52 B1s were constituted, as well as five Compagnie Autonome de Chars (autonomous tanks companies), with 56 B1s in all, plus 34 more in the 28 BCC (Bataillon de chars de combat). All B1s were reequipped with phonic versions of the ER53 radios, and command tanks received ER55 long-range radios.

B1 tanks were used (and lost) during the first phase of the operations, especially the first week. Most counter-offensives against Guderian’s “run to the sea” counted at least several B1s. Without air support, these moves were doomed to fail against the quick and lethal Stuka attacks. Bad tactics of course brought these precious tanks to inept, hasty defensive “plugs” in the defensive lines, most of the time, ending in pure waste.

In some case, the B1’s extraordinary sturdiness allowed some success, notably the counter-attacks at Laon and Moncornet led by col. De Gaulle, and stiff resistance like at Hannut and particularly Stonne. During these events, some individual B1s blocked the German advance by themselves, inflicting horrendous casualties. In a particular case, a single B1, Eure, commanded by Captain Pierre Billotte, attacked frontally and single-handedly destroyed thirteen Panzer IIIs and IVs, and then withdrew, while being hit 140 times.

During two days, B1 tanks from the 3rd Division Cuirassée de Réserve literally ruled the battlefield at Stonne, destruction coming only due to German overwhelming attacks against single tanks and excellent communication, air strikes and indirect fire (by German howitzers). Some B1s also broke down or ran out of ammunition and petrol. The last surviving B1s were mixed with other tanks in support of the so-called “hedgehogs”, which fell one after the other in June 1940. By the 26th of June, the campaign was over.

B1/B1 bis fate: German and French service

The Germans captured hundreds of tanks, including no less than 161 B1 bis tanks, later pressed into service as Panzerkampfwagen B-2 740(f). Sixty were converted into flamethrower versions (Flammwagen auf Panzerkampfwagen B-2 (f)), and sixteen to carry the 105 mm (4.13 in) howitzer. A single unit was equipped only with B1s, the Panzer-Abteilung 213, stationed in the British Channel Islands. One of these ended at the Bovington museum, repainted in French colors. 17 units in all received modified B1s, as they saw service in the Balkans (March-April 1941) and the Eastern Front, where their armor and armament proved well-adapted against Russian heavy tanks.

This surviving Char B1 bis can be seen in the French village of Stonne (Photo: Wolfgang Vinter)

By 1944, they were all gone. Those stationed in France took part in the defense of Normandy, and others were stationed in support of the German units defending Paris. In August 1944 some were captured by insurgents and used for punctual actions by local FFI units. In 1945, German pockets of resistance in France, especially those on the western coast, were left to the FFI and the regular French 1st army. Edmond Voillaume’s 2nd Company was equipped with 19 B1s, which decisively took part in the reduction of the Royan pocket, and La Rochelle. B1s were also part of the 13th Dragoon Regiment, which took part in operations in Alsace and Southern Germany. They were stationed after V-day in the French occupied zone, until the unit was disbanded in 1946.

Links

Char B1 bis – Main article on Wikipedia
Char B1 bis on Military Factory
Char B1 bis on Tank-Hunter.com

Char B1 bis Specifications

Dimensions (l-w-h) 6.37 x 2.46 x 2.79 m (20.8 x 8.07 x 9.15 ft)
Total weight, battle ready 28 tons (56,000 lbs)
Crew 4 (driver, main gunner, sec. gunner, commander)
Propulsion Renault 6-cyl inline, 16.5 l, 272 bhp
Speed (road/off road) 28/21 km/h (17/13 mph)
Range (road/off road)-fuel 200 km (120 mi)-400 l
Armament 75 mm (2.95 in) ABS SA35 Howitzer (hull)
47 mm (1.85 in) SA 35 AT gun (turret)
Reibel 7.5 mm (0.295 in) machine-gun
Maximum armor 60 mm (2.36 in)
Total production 369

ELVO Leonidas

Greece (1982)
APC – 900+ built

About ELVO company

The state-owned company, Elliniki Viomihania Ohimaton (“Hellenic Vehicle Industry”) was founded in Thessaloniki in 1972 to produce locally Steyr-Daimler-Puch models after an agreement with the Austrian company. It was known originally as Steyr Hellas S.A. and manufactured motorbikes and farm tractors before focusing in the 1980s on military vehicles. A license to produce the 4K 7FA was secured and the vehicle was to be known locally as the “Leonidas” after the Spartan king. When the first production was achieved, followed by exports, the company was renamed ELVO in 1986, embarking on the all-improved Leonidas II.

Leonidas 2 APC

The latter was much more a local product than the first. In 1988, development started with Steyr for a new IFV -which development was pursued with Spain to give birth to the Pizarro/Uhlan instead. The company indeed left the development, which was resumed in 1998 with a local IFV, the Kentaurus, revealed but not followed by any order. The company also produced 140 Leopard 2 HEL MBTs under a KMW license but accumulated losses. The company should have been dissolved in 2015 but this was frozen by the state.

Design of the Leonidas I

The first two prototypes were ordered from Austria in 1981. Few modifications were made to the 100 vehicles to follow, which were initially to be built locally, but gradually locally-manufactured parts found their way into the manufacturing process.

Largely based on the Saurer 4K 7FA, already largely treated, the first Leonidas did show some detailed modifications like the exhaust vents and left muffler, the shape of the hatch, hull fasteners and handbars, even the main gun-shield with a set of smoke grenade dischargers behind the gunner’s seat. The basic version was an APC with a prismatic hull and a drivetrain comprising six roadwheels, front idlers (where the engine was) and rear idlers.

Leonidas 2 APCs

Suspensions were torsion bar units with shock absorbers on the first and last roadwheels units. The all-welded hull made of steel RHA is prismatic, with a front engine compartment and transmission (STEYR 7FA, inline 6-cylinder water-cooled diesel, producing 320 hp at 2,300 rpm.). The driver was located behind to the right-hand side, followed by the gunner/commander in its open turret, a shielded cal.50 12.7mm M2HB heavy machine gun. Behind was located the troop compartment, without pistol ports but with roof hatches and rear doors. The Leonidas 1 was produced from 1982 to 1983.

Development of the Leonidas II

In 1986 the Leonidas 2 was developed as an improved version with added Greek components. 56 were manufactured, 40 by Greece and 16 by Austria, all purchased by Cyprus. In 1987 the Greek government ordered 344 of this version, all manufactured in Greece. it met the final selection, meeting the Army’s operational needs in March 1987 and was designed as an Infantry Fighting Vehicle (IFV).

This version had a new turret, weighed 18.8 tons (4 ton heavier), was propelled by a 450 hp (instead of 320 hp) engine coupled with a ZF 6 HP 500 automatic transmission (instead of the ZF 6-S80 manual transmission with 6 gears forward and 1 reverse), and its top speed was 70 kph (instead of 63 kph). The first phase of the program cost 22 billion drachmas and it was also stated its price was 8.5% lower than the Leonidas 1 mostly built from Austrian parts.

The turret ring was made compatible with a large array of weapons systems, like A 20-30 mm autocannon turret, a 90 to 105 mm Cockerill cannon turret (at the rear), or 81-120 mm mortar. In practice, the turret was unarmed or received the same cal.50 as in the Leonidas 1. This turret was partly enclosed and the smoke dischargers were located on each side. The other modifications were additional automatic fire suppression system, commander’s rotating periscope and better smoke grenade dischargers, but overall a more powerful engine and better performances.

Leonidas 2 IFV – rear view

Fate

Production was maintained in 1993-95 (141) for Cyprus and a last Greek batch of 57 vehicles in 1998, and ten more for Macedonia (FYROM) in 2001 with a new automatic transmission. The general total figure given is around 900 vehicles, of which 503 were in service with the Greek Army (most active today), and 197 for Cyprus. The Austrian proposal for a joint development in 1998 was eventually rejected (Elvo built the Kentaurus instead) but also a Leonidas 3, as it was argued the type was already obsolete.

Video: Short documentary about ELVO

Links

The Leonidas 2 on wikipedia
The Leonidas on Globalsecurity
On Army-guide.com
Additional photos-greekmilitary.net

Leonidas 2 Specifications

Dimensions 5.87 x2.50 x1.70 m (19.3 x8.2 x5.7 ft)
Total weight, battle ready 18.8 tons
Crew 10 (driver, cdr/gunner, 8 infantry)
Propulsion 6-cyl Steyr 430 hp
Suspension Torsion bars
Speed (road) 70 km/h (xx mph)
Range 520 km (320 mi)
Armament 12.7 mm M2HB, 7.62 mm MG3, See notes
Armor 26-32 mm (0.24-0.35 in)
Total production 900 in 1982-2001

Conqueror FV214

United Kingdom (1954)
Heavy Tank – Around 180 built total

From the “Universal Tank”

The postwar “Universal Tank” concept was derived from the 1944 A45 Infantry Support Tank concept, an attempt to create, right after the Centurion, a successor heavy tank to the Churchill. However both projects were fused as the FV200 universal tank series that was to have the mobility of a cruiser but the level of protection and firepower of a heavy tank as well as a versatile chassis for other purposes (ARV, SPG…). The heavy tank variant Fv201 (55 tonnes, 20-pounder gun) was chosen for development to respond to the Soviet IS-3. It was to be armed with a 120 mm, however the delay to create such massive gun and the turret led to the transitional F221 Caernarvon, fitted with the Centurion Mk.2 turret. Eventually, the definitive FV214 was built in 1955 in two series; and deliveries lasted until 1959.

Design

Protection

The Conqueror was the last British Heavy Tank in service. It was largely a product of WW2 thinking about tanks, and unlike first generation MBTs, put the typical emphasis on firepower and protection over mobility. They were tailored to defeat the Soviet IS-3 when the cold war was at its hottest and would have been surely up to the job (see later). The hull made of RHA was all-welded and relatively low, with a well-sloped glacias nose and cast turret design. The armor level was particularly high, with 178 mm nominal thickness front plates (7 inches), but equivalent to 250 mm (10 inches) LOS (line of sight). The lower beak was 78 mm at 60°, the rear part of the front glacias, connected to the turret ring, 21 mm at 83°, and rear engine deck 17 mm, the rear plate 51 mm (flat), the rear lower plate 31 mm at 70° and the bottom, 13 mm. The upper and lower side walls were 51 mm thick, flat, and the protective side skirts 6 mm.

Conqueror Armour scheme

The cast armor turret had a similar front thickness and even superior on the mantlet (200 mm). The front was 150-170 mm thick, the front slope was 44 mm at 78°, the roof 31 mm, the rear 31 mm, and the rounded sides walls 89 mm. The general profile of the tank stayed relatively low, slightly higher than the IS-3.

Mobility

The hull and chassis of the FV 200 series were designed for a wide variety of duties, and sturdy enough for the heaviest loads. It was composed of a typical “heavy tank” drivetrain, in two 8×2 roadwheels groups per side, for 64 roadwheels in total, resting on double pin, large track links to reduce ground pressure. Reinforced and sturdy Horstmann units instead of torsion bars assumed the suspension. The paradox was only light tanks and the heaviest in service in the UK were given these, like, until the Chieftain in the 1960s. By the 1980s, the Challenger adopted hydropneumatic units. Based on coil springs bogies, they had a relatively long course, were 100% external and easy to replace and maintain, while the torsion bars were partly internal.

Conqueror Mk. I at Bovington

All this armor made it for an exceptionally heavy tank, at 64 tons compared to the Centurion’s 51. The only source of power available was the proven Rolls Royce Meteor, in a souped-up version of the WW2 Cromwell and Centurion 650 hp, coupled with a 5-speed Merrit-Brown Z51R Mk. F gearbox. Its top speed and range were consequently severely limited, and the stress both on the engine, transmission (only 800 hp), and suspensions took its toll, making it mechanically unreliable. Tactical mobility in addition was limited by the few bridges capable to handle it weight. However the small roadwheels resting on many bogies and wide tracks had the effect of giving similar traction and mobility performances as the Churchill, if not better. It could climb and go in some places the centurion couldn’t, despite the latter was 13 tons lighter.

Armament

The IS-3 main gun indeed was ill-designed for accurate long-range fire, fast rate of fire or was limited in its ammunition capacity due to old-fashioned two-stage rounds. On the contrary, the British Royal Ordnance L1 120 mm rifled gun was tailor-made and much more capable gun than the IS-3 at long range. In fact, all studies shown that it was capable to out-range the IS-3 by a generous margin. That, in theory, would have rendered heavy armor unnecessary, but experience showed that engagements rarely occurred in optimal distances and terrains. The secondary armament comprised two cal.30 Browning machine guns, one coaxial and the second placed on the roof, manned by the tank commander.

Conqueror Mk. I rotatable Tank Commander Cupola at Bovington

It should be noticed that the commander had an advanced rotating cupola, providing an equally advanced fire control system as he could align it on a target independently of the turret, to measure the range with a coincidence rangefinder. He could then direct the gunner on the laying and azimuth parameters which were mechanically indicated in the cupola. This was a very early “hunter-killer” mode allowing to rapidly engage several targets. At the same time, the Soviet TPKU-2 and TKN-3 did not use a rangefinder.

Conqueror Mk.I on trials in 1956

Evolution

FV214 Conqueror Mk I This first version (20 built) had three periscopes for the driver.
FV214 Conqueror Mk II This second, more produced version (160) had redesigned frontal armour plates joins but a single rotatable periscope for the driver, and a modified, improved exhaust system.
FV215: A semi-SPG design with a FV200 chassis mounting a limited traverse turret armed with a 183 mm gun. Only a wooden mockup was produced.

FV221 Caernarvon

The FV221 Caernarvon

Considered as a stopgap tank before the heavy turret was ready, it was nonetheless part of the FV 200 lineage. At the end, the Centurion was found better. Only the Caernarvon mobility was judged satisfactory, as its turret was far lighter and its engine at least on paper (800 hp vs 650 hp) much more capable. But in terms of speed and range, it lagged behind. They were given the Mk III 20 pounder turret of the Centurion mark II but never really hit their mark as main battle tank and after a single prototype Mark I, only a short experimental serie (21) Mark II was released.

Conqueror ARV2 FV 222\

FV222 Conqueror ARV

This was the heavy Armoured Recovery Vehicle (ARV), still used years after the retirement of the main type. One is still on active duty as a training beach recovery vehicle today. To the Mk I (8 produced) succeeded the Mk II, with 20 produced. Devoid of a turret and with a tailor-made superstructure, it weighted 57 tons had a winch capacity of 45 tons in direct pull. The design of the glacis slope was different, much less pronounced. Towing crane and apparatus were stored on the side of the rear deck. Steel cables were attached to the side skirts.

In Action

All the 180 Conqueror ever built were stationed in Germany, in the northern British sector, facing the possible Soviet onslaught. Their rôle was also to provide a long-range cover for the early, 20-pdr armed Centurions. They would have been also directed against Soviet heavy tanks units, on par with the American M103s. They stayed in service in Germany only seven years, nine given to each tank regiment, and usually grouped in three tank troops. They Participated in rare exercises (due to their poor tactical mobility). In the early 1960s, the arrival of the Centurion armed with ROF’s L7 gun made the last British heavy tank obsolete and they were retired.

Surviving vehicles could be found at the Bovington Tank Museum, and the Land Warfare Hall of the Imperial War Museum Duxford. Another is on display in France, at the Musée des Blindés, Belgium at the Royal Museum of the Army (Brussels) and Kubinka in Russia. The American Littlefield Collection also counts one. In Germany, several training target hulks could be seen at the Haltern Training area. ARVs also survived, two at the Military History Museum on the Isle of Wight, and the REME Museum of Technology. Another ARV is in service at the Amphibious Experimental Establishment AXE (Instow, North Devon) for beach tank recovery practise.

Sources/Links about the Chieftain

The Conqueror on Wikipedia
Conqueror and various concepts on Henk of Holland

Video: Duxford Tankfest 17/06/2012

Conqueror Specifications

Dimensions 38oa/25.4 x 13.1 x 10.5 ft (12 x 3.99 x 3.19 m)
Total weight, battle ready 64 tons short (128,000 ibs)
Crew 4 (Driver, commander, gunner, loader)
Propulsion Rolls-Royce Meteor M120 810 hp (604 kW) – pwr 12 hp/t
Suspension Hortsmann suspensions
Speed (road) 22 mph (35 kph)
Range 100 mi (164 km)
Armament Main : ROF L1 4.7 in (120 mm)Sec. coaxial + roof Browning 0.3 in (7.62 mm)
Armor 7 in (180 mm) front glacis+turret (250 mm LOS)
Total production 185 in 1959.

Sherman VC Firefly

UK/USA (1944)
Tank Hunter – approx. 2000 built

Turning the Sherman Into a Killer

From the hedgerow of Normandy, France, to the hills of Italy and the plains of Netherlands, the Firefly was one of the few Allied tanks the Germans learned to fear… Among the most potent Allied conversion of the war, and certainly one of the deadliest version of the Sherman, it was a clever -although risky and improvised- move to try to keep up with the latest German tank developments. At that time, the “basic” M4 Sherman equipped the Allies almost exclusively, from the US to the British, Canadian, ANZACS, Free Polish and Free French forces, and its limitations were well known before 1944.

Its basic 75 mm (2.95 in) gun was excellent to deal with other tanks at reasonable ranges and against armor up to 75 mm (2.95 in), or against fortifications and infantry. But facing the latest versions of the Panzer IV, the Panther and Tiger, it was woefully inadequate. However, the British Army had just received the superlative 17 pounder, which proved itself able to nail any known Panzer. Mated with the Sherman, this stopgap combination (before the new generation of Allied tanks could enter service) became lethal, and added its own weight to the Allied effort to secure victory.

Preserved Firefly, showing its camouflaged barrel, as seen in 2008.

Adoption

The idea of putting the 17 Pounder (76.2 mm/3 in) on a Sherman was long opposed by the Ministry of Supply. It finally happened largely due to the efforts and perseverance of two officers, British Major George Brighty, with the help of Lieutenant Colonel Witheridge, an experienced veteran of the North African campaign and wounded at Gazala. Despite reports and refusals, they managed to pursue the project by themselves and eventually get the concept accepted. Massive delays also began to appear in the development of the official projects which were meant to mount the new gun. Brighty had already made attempts of the conversion at the Lulworth Armoured Fighting School in early 1943. This first version had the whole recoil system removed, locking in effect the gun in place, while the tank bluntly absorbed the recoil. Witheridge joined Brighty due to the doubts of the Challenger being ready in time and lobbied actively for the same idea, providing his assistance and solving the recoil problem.

They received a note from the Department of Tank Design to cease their efforts. However, thanks to Witheridge’s connections, they eventually convinced the head of the Royal Armoured Corps. They then won over the Director General of Weapon and Instrument Production, and the Ministry of Supply, who ultimately gave them full support, funding, and an official approval. In October-November 1943 already, enthusiasm and knowledge about the project grew. In early 1944, before the new delays of the Challenger and inability of the Cromwell turret ring to receive the 17 pdr became known, the programme was eventually given the ‘highest priority’ by Winston Churchill himself in preparation for D-Day.

Ex-Dutch Firefly preserved at the Amersfoort Cavalry Museum

About the 17 pounder

This legendary piece of ordnance was the first of the many ROF (Royal Ordnance Factory) cannons which came to fame postwar. These included the rifled L7 105 mm (4.13 in) and later the L11 120 mm (4.72 in) gun that was given to the Chieftain and Challenger. The 17 pounder was a 76.2 mm (3 in) gun with a length of 55 calibres. It had a 2,900 ft/s (880 m/s) muzzle velocity with HE and HEAT rounds and 3,950 ft/s (1,200 m/s) with APDS or Armor Piercing Capped, and Ballistic Capped. These figures allowed it to defeat armor in the range of 120-208 mm (4.72-8.18 in) in thickness at 1,000 m and up to 1,500 m with the APDS.

The design of the gun was ready in 1941 and production started in 1942. It proved itself time and again in Tunisia, Sicily and Italy, with the first action in February 1943. So the idea to have it inside a tank turret was a priority, since the QF 6-pdr was found inadequate by 1943. However, the 17 pounder was long and heavy. It therefore needed much reworking and compromises to have it installed in a turret, and intermediary solutions had to be found. By 1944, the Archer used it, as well as the Achilles (M10 Wolverine), the Challenger, and later the Comet.

17 Pounder ammo rounds being loaded by the crew of a Sherman Firefly. Notice the camouflage nets around the turret, mantlet and gun barrel.

Conversion Design

The work of genius was that of succeeding cramming the heavy gun into a turret it was never designed for. By doing it, W.G.K. Kilbourn, a Vickers engineer, allowed the quick conversion of the most prolific Allied tank. This ensured that no changes in maintenance, supply and transport chains were needed. These were quite critical factors after D-Day.

There were a few changes made to the chassis, most of which were Mk.I hybrids (cast glacis) and Mark Vs, except for the modified ammo cradles and the hull gunner position being eliminated to make room for more ammo. The turret interior was also completely modified. The rear was emptied to allow the gun to recoil and a counterweight was added to the rear to balance the long barrel. This “bustle” now housed the radio, formerly at the back of the turret, and could be accessed by a large hole in the casting. The mantlet was also modified, 13 mm (0.51 in) thicker than the original. The loader also had his position changed. A new hatch had to be cut into the top of the turret over the gunner’s position since the size of the new gun prevented the gunner from using the normal hatch.

But the 17-pdr itself still had a one-meter long recoil course, and the whole recoil system was completely modified. The main recoil cylinders were shortened while additional new cylinders were added to take advantage of the turret width. The gun breech was rotated 90 degrees to allow the loader to sit on the left. The gun cradle also had to be shortened, which caused stability concerns. These were solved by the adoption of a longer untapered section at the base of the barrel. Therefore, the Firefly had it’s custom tailored version of the 17 pdr.

British Sherman Firefly at Namur, in Belgium, in 1944

Main Gun Penetration Figures

Official British War Department test figures show that the 17pdr anti-tank gun firing armor piercing AP rounds would penetrate the following thickness of homogeneous armour plate and these distances: 500 yrds. (457 m) = 119.2 mm; 1000 yrds (914.4 m) = 107.3 mm and 1500 yrds (1371.6 M) = 96.7mm. When firing armor-piercing capped (APC) rounds at face-hardened armor plate these are the test results: 500 yrds. (457 m) = 132.9 mm; 1000 yrds (914.4 m) = 116.5 mm and 1500 yrds (1371.6 M) = 101.7 mm. When fired at slopped armour it was estimated there would have been 80% success at 30 degrees’ angle of attack.

The Firefly in Action

The Firefly was ready in numbers and filled the 21st Army Group’s Armored Brigades in 1944, just in time for D-Day. This was fortunate because Allied intelligence did not anticipate the presence of enemy tanks, of which the numerous Panthers were formidable adversaries for the Sherman.

Ken Tout summed up his impressions about the Firefly, then at the 1st Northamptonshire Yeomanry:
“The Firefly tank is an ordinary Sherman but, in order to accommodate the immense breach of the 17-pounder and to store its massive shells, the co-driver has been eliminated and his little den has been used as storage space. … The flash is so brilliant that both gunner and commander need to blink at the moment of firing. Otherwise they will be blinded for so long that they will not see the shot hit the target. The muzzle flash spurts out so much flame that, after a shot or two, the hedge or undergrowth in front of the tank is likely to start burning. When moving, the gun’s overlap in front or, if traversed, to the side is so long that driver, gunner and commander have to be constantly alert to avoid wrapping the barrel around some apparently distant tree, defenceless lamp-post or inoffensive house”

British Firefly crossing a bridge, Operation Goodwood

Fortunately, the Firefly was also present. The British and Commonwealth units had to face over 70% of all German armor deployed during the Battle of Normandy, including the much-feared SS Panzer units, in particular around Caen. In turn, the Germans learnt to recognise and respect the Firefly, which often became their #1 priority target in most engagements. Such was the damage they inflicted. In response, the crews usually painted the protruding half of the barrel with an effective countershading pattern to try to disguise it as a regular Sherman. A common tactic was to place the Fireflies in good hull-down positions in support of other Shermans, covering them in the advance each time an enemy tank would reveal itself, at least in theory.

Their effectiveness rapidly became legendary, as testified by the most enviable hunting scores of all Allied tanks. On 9 June 1944, Lt. G. K. Henry’s Firefly knocked-out five Panthers from the 12th SS Panzer Division in rapid succession during the defense of Norrey-en-Bessin. Other Shermans were credited with two more, out of a total of 12, successfully repelling the attack. On June 14, Sgt. Harris of the 4th/7th Dragoon Guards destroyed five Panthers around the hamlet of Lingèvres, near Tilly-sur-Seulles, changing position in between. Even the most feared German top ace tank commander, Michael Wittman, was presumably killed by a Canadian Firefly. This famous action was credited to Ekins, the gunner of Sergeant Gordon’s Sherman Firefly from the Sherbrooke Fusiliers Regiment, A-Sqn. He destroyed three Tigers in a row, one of which was presumably that of Michael Wittman, near Cintheaux, in August 1944.

Fireflies of the Irish Guards group, operation Market Garden

In total, the 1900+ Fireflies were used by the 4th, 8th, 27th, 33rd Armored Brigades, the Guards Armoured Division and the 7th and 11th Armoured Division in Normandy and north-western Europe, including the Netherlands and Northwestern Germany. In Italy, it was deployed with the British 1st and 6th Armoured Divisions. The Canadians had Fireflies with the 1st (Italy) and 2nd Brigades and in the 4th and 5th Canadian Armoured Divisions, mostly in north-west Europe in 1945. The 1st Czechoslovak Armoured Brigade operated 36 Firefly 1Cs during the siege of Dunkirk in 1944. The 4th New Zealand Armoured Brigade had some during the Italian campaign, as did the Polish 1st Armoured Division (NW Europe) and 2nd Armoured Brigade (Italy), and the 6th South African Armoured Division in Italy. After the war, Fireflies were still used by Italy, Lebanon (until the 1980s), Argentina, Belgium and the Netherlands (until the late 1950s).

Sherman Firefly Specifications

Dimensions (L/w/h) 19’4” (25’6” oa) x 8’8” x 9′ (5.89/7.77 oa x 2.64 x 2.7 m)
Total weight, battle ready 37,75 long tons (35.3 tons, 83,224 lbs)
Crew 4 (commander, driver, gunner, loader)
Propulsion Multibank/radial petrol engine, 425 hp, 11 hp/ton
Suspension HVSS
Top speed 40 km/h (25 mph)
Range (road) 193 km (120 mi)
Armament ROF OQF 17 Pdr (3 in/76.2 mm), 77 rounds
Roof cal.50 (12.7 mm) Browning M2
Coaxial cal.30 (7.62 mm) Browning M1919, 5000 rounds
Armor 90 mm (3.54 in) max, turret front
Total production 2000+ in 1944-45
For information about abbreviations check the Lexical Index

Links, Resources & Further Reading

The Firefly on Wikipedia
Firefly Gun barrel camouflage
Firefly reconstruction in the Netherlands

 

Flakpanzer 1 Gepard

Western Germany (1965)
SPAAG, 377 built

In 1966, the Bundeswehr (German Army) was looking to replace its now redundant American-supplied M42 Duster Self-Propelled Anti-Aircraft Guns (SPAAGs). Two projects were investigated. These were the ‘Matador’ (designed by Rheinmetall, AEG, Siemens, and Krauss-Maffei) and the ‘5PFZ-A’ (designed by Oerlikon, Contraves, Siemens-Albis, Hollandse Signaalapparaten and Kraus-Maffei/Porsche). In 1971, it was finally decided that the 5PFZ was the better vehicle, and as such a test batch of four 5PFZs, with the designation of ‘B1’, were delivered. Another pre-series batch of twelve 5PFZ-B1s were delivered in 1973.

By September 1973, the vehicles had received the name Flugabwehrkanonenpanzer Gepard (often shortened to Flakpanzer Gepard. Gepard meaning Cheetah in English). The first order for the vehicle totaled 420 units. After the first 195, the remaining 225 were equipped with a Siemens Laser Rangefinder. These Gepards were given the B2 identifier.

The Gepard has served non-stop since its introduction and has only started to see retirement in 2010. It has served with a number of countries.

Bundeswehr Gepard 1A2. Photo: Hans-Hermann Bühling

A Fearsome Feline

Like its World War II namesake, the Flakpanzer 38(t), the Gepard was based on the hull of an existing tank. The tank chosen was Germany’s own Leopard 1 Main Battle Tank (MBT). Entering service in 1965, the Leopard 1 is one of the most famous tanks of the Cold War and Modern Era. It was lightly armored, but extremely mobile and armed with the potent British L7 105mm Rifled Gun.

After countless upgrades and derivatives, the tank was replaced in the Bundeswehr by 2003, by its successor, the Leopard 2. However, it continues to serve around the world in countries such as Turkey, Brazil and Greece.

The Gepard’s hull remained almost identical to the Leopard original, aside from a slight increase to the distance between the third and fourth road wheels. This also resulted in a slightly longer hull. The engine deck was also extended to house an additional six 24 volt batteries. Under the engine deck is the same the 830 horsepower MTU MB Ca M500 diesel engine used in the Leopard. This propelled the vehicle to 40 mph (65 km/h). The SPAAG was also equipped with a secondary Daimler-Benz OM 314 4-cylinder diesel to supply energy to the tank’s electrical systems. This engine is located in the front left of the hull where the original Leopard had an ammunition rack and works through 5 generators that power the turret’s traverse, gun elevation, and radar systems. The exhaust for this motor runs along the left-hand side of the hull.

The Gepard’s turret is lowered on to an awaiting hull. Photo: Peter Favier on Pinterest

The Gepard is operated by just 3 crew members consisting of a Driver, a Gunner and the Commander. The Gunner sits on the right-side of the turret with the Commander on the left. The driver remains the hull. The Gunner and Commander stations are equipped with stabilized panoramic sights which are incorporated into the turret roof. The sights can be paired, or ‘slaved’ to the tracking radar. The Commander is equipped with hand held viewing equipment when operating open-hatch. Both of these men share a large one-piece hatch in the turret roof.

Turret and Weaponry

The turret is the major change from the Leopard and houses the equipment that, at the time of its creation, made the Gepard one of the most deadly Anti-Aircraft vehicles ever built. The Gepard’s primary weapons are dual 35 mm Oerlikon KDA autocannons which are 90 calibers (3.15 m, 10 ft 4 in) long. As well as the full 360 degrees rotation of the turret, the guns can be elevated to almost a 90-degree vertical angle. The muzzle of the guns are fitted with a projectile velocity sensor. Each gun has a 550 rounds per minute rate-of-fire, with a combined rate of 1,100 rounds per minute. The cannons are chambered for 35×228mm standard NATO issue rounds. These include SAPHEI (Semi Armor-Piercing High-Explosive Incendiary), HEI (High-Explosive Incendiary) and FAPDS (Frangible Armor-Piercing Discarding-Sabot).

The Gepard firing its guns in a training exercise. Photo: SOURCE

The vehicle carries a mix of these ammunition types, holding 620 rounds in total. This amount is split equally between the guns. 40 Anti-Tank rounds are carried near the breaches of each gun for quick loading should the vehicle have to defend itself from attacking enemy tanks or IFVs (Infantry-Fighting Vehicles) in an emergency. The rounds are fed in by disintegrating belts. When fired, the links and spent cases are ejected from the elevation hub of the guns.

The cannon’s work in conjunction with the radar systems and a laser rangefinder. The Gepard started out with Doppler Radars. These work by using the Doppler effect to calculate velocity and distance data of a selected target. The same technology can be found in the speed guns used by Police. An MPDR-12 Doppler surveillance or ‘Search’ radar is mounted on the rear of the turret. This revolves 60 times per-minute and has a range of 15 kilometers (roughly 9 ½ miles). It is mounted on a swinging arm. When in use it is raised, when it’s off it is lowered. This radar searches for targets in the assigned airspace. When an aircraft is pinged and identified as hostile, the Doppler ‘Tracking” radar mounted on the nose of the turret takes over. This radar can rotate 180 degrees left and right and also a range of 15 kilometers. Once it is locked on, it automatically tracks the target in azimuth, elevation, and range.

Romanian Gepard in service – src wikimedia commons, lt.col Dragoş Anghelache. Photo: SOURCE

Upgrades

Over its career, the Gepard received a number of upgrades to its electrical systems. Some upgraded vehicles have a digital FCS, these were designated B2Ls. The Doppler radars were replaced as well. The Search radar was replaced with an S Band Radar (S band: Part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz), used by NASA and in Bluetooth and WiFi devices). The Tracking with a Ku Band radar (Ku band: Part of the microwave band of the electromagnetic spectrum covering frequencies from 12 to 18 gigahertz (GHz), originates from the original K band used by NATO). These upgraded radars retained their 15-kilometer range.

In operation, the Gepard would often be deployed with Stinger Surface-to-Air (SAM) teams to take advantage of the scanning range of the Gepards equipment. In later models, the Gepard was equipped with attachment points on the gun elevation hubs for dual tubed ManPad (Man Portable Air Defence) SAM launchers. This was not very common and was surpassed by SAM armed Ozelot Light Flak vehicle, based on the Weasel Light AFV.

The “Flakpanzer Leclerc”. Notice the two Stinger missiles connected to the gun arm. Photo: TankPorn of Reddit

A version of the Gepard 1A2 was also proposed with two Stinger missiles attached to each of the guns. However, it was not accepted by the Bundeswehr. The Flakpanzer Gepard turret was also proposed for mounting on the French Leclerc MBT. The demonstrator also has the missiles mounted. However, nothing more came of it.

Phasing Out

As already stated, the Flakpanzer Gepard started to be phased out in the late 2000s. It is in the process of being replaced by the MANTIS (Modular, Automatic and Network-capable Targeting and Interception System) gun system.

Export

Netherlands

PRTL ‘Pruttel’
The Netherlands was the second largest user of the Flakpanzer 1, receiving 95 of the vehicles. In Dutch service, it was renamed Pantser Rups Tegen Luchtdoelen or PRTL. Translated to English, this literally means ‘Armour Track Against Air Targets’. It was often pronounced as ‘Pruttel’ (meaning ‘Sputter’) by its crews, perhaps as a result of the sound of the cannons when fired.

The Dutch Army did modify the scanning equipment of the Flakpanzer. They switched the Search Radar to X band, part of the microwave band of the electromagnetic spectrum covering frequencies from 7 to 11.7 gigahertz (GHz). The Tracking radar was replaced with Ka Band, Part of the microwave band of the electromagnetic spectrum covering frequencies from 26.5 to 40 gigahertz (GHz). Like Ku, Ka band is a further development of the NATO K band.

The PRTL has begun to see retirement in the Dutch Army with only 57 currently remaining operational. Some of the surplus has been sold to other countries.

The Dutch PRTL ‘Pruttel’, note the different radar equipment. Photo: Peter Favier of Pinterest

Other Countries

Brazil: 36 vehicles, still in operation.
Jordan: 60 vehicles previously Dutch PRTLs.
Chile: Only 4 ever received after the original order for 30 vehicles was abandoned due to financial issues.
Belgium: Operated 55 vehicles, now withdrawn from service.
Romania: 43 vehicles still in operation.

Eastern Cousin, the Type 87

The Japanese took great interest in the Flakpanzer Gepard, so much so that they built their own version based on the hull of the Type 74 Main Battle Tank. The vehicle was designated the Type 87. The weaponry was supplied by Oerlikon. To avoid patent infringement claims, the arrangement of the sensory equipment was altered. The Search radar remained at the back of the turret, but the Tracking radar was moved to the turret roof. The SPAAG is currently in service with the Japanese Ground Self-Defense Force (JGSDF), who operate 52 vehicles.

The Japanese Type 87, note the similarities to the Gepard. Photo:

Gepard Specifications

Dimensions (L-W-H) 9.54m (7.09m without gun) x 3.25m x 2.61m
(31’3″ (23’3″) x 10’7″ x 8’6″ ft.in)
Total weight, battle ready 42.2 tons (84,400 lbs)
Crew 4 (driver, commander, gunner, loader/radio)
Propulsion MTU MB 838 10-cyl 37.4 L, 830 PS (610 kW)
Suspension Independent torsion bars
Speed (road) 65 km/h (40.4 mph)
Range (road/cross-country) 600/450 km (373/280 mi)
Armament
Armor 19-21 mm steel plus 10-70 mm RHA (0.75-0.83 + 0.39-2.76 in)
Total production (all MBT versions) 4,744 in 1965-85

Links, Resources & Further Reading

Osprey Publishing, New Vanguard #16: Leopard 1 Main Battle Tank 1965–95
On WeaponSystems.net
On Military-Today.com

Tetrarch, Light Tank Mk. VII

 United Kingdom (1938)
Airborne Light Tank – 100 built

At the start of the 20th century, nations at war experienced rapid technological advancement, and with this development came a time of adaptation and experimentation. The end of the Great War saw many countries taking stock of what had been introduced and experienced, and the interwar period proved to be a time of rapid development, testing, and theorizing, of which armored vehicles were no exception. The British Army saw fit to change the makeup of their forces to accommodate new tanks and therefore broke the vehicle design into three groups; light tanks, cruiser tanks, and infantry tanks.

Infantry tanks were designed to provide armored support for infantry units, so speed was not a focus. The Royal Tank Corps, and the Cavalry Corps however, both requested faster Armored Fighting Vehicles (AFV) to fill the roles of rapid breakthrough exploitation and reconnaissance. These ‘cruiser tanks’ were used as mechanized cavalry, utilizing lighter arms, and lighter armor than infantry tanks. The final category, light tanks, were designed to scout enemy positions, and act as policing vehicles for occupational forces, and as such, they consisted of minimal armor, and usually were only armed with machine guns. The Vickers-Armstrongs’ series of light tanks proved popular for the British Army. As a result, British and Commonwealth nations used the Vickers-Armstrongs Light Tank Mk VI extensively from the mid to late 1930’s. Due to its popularity, the Mk.VI was still in operational use at the start of World War II, however, chief tank designer Leslie Little was working on a private project to replace the Mk.VI, which would form the basis for the new Mark. VII Tetrarch. The name ‘Tetrarch’ is the Roman title given to the governor of one of four provinces of territory, or the Greek word for ‘ruler’).

Tetrarch light tank at the Armoured Fighting Vehicle School, Gunnery Wing at Lulworth in Dorset, 25th of March 1943. Source: Imperial War Museum Collection

Development

When the British Expeditionary Force was deployed in Europe from 1939 to 1940, a majority of the armor available consisted of the Mk.VI. However, the Vickers-Armstrong company was developing the Light Tank Mk.VII. Starting the design in 1937, and proposed to the War Office in 1938, the “Purdah” (meaning a state of seclusion or secrecy) tank as it was nicknamed, was sent to trials by 1938. Originally, the Mk. VII was put through trials designed to test its viability as a ‘light cruiser’ tank, since the British Army was still satisfied with the Mk.VI at the time, and felt that it did not need to be replaced. Eventually, though the Mk.VII was rejected for the light cruiser role, in favor of the Cruiser Tank Mk. I, A9.

Prototype Tetrarch from the factory. Note the odd muzzle break on the main weapon, and the Vickers machine gun cowling.

Trials for the Mk.VII lasted from May until June 1938, and at their completion, the War Office assigned the Mk VII a new ordnance designation; ‘A.17.’ An order was put in for a limited run of 70 Mk. VII to be built in July but the number was raised to 120 in November with two required design changes. First, the armament would be changed from a 15mm Besa main gun, and a 7.92mm Besa machine gun to an Ordnance Quick-Firing 2-pounder (40mm) gun with a coaxial 7.92mm Besa. A second requirement specified the for mounting of an external fuel tank on the rear of the vehicle to increase the operational range. In July of 1940, production started on the Mk. VII, but the War Office soon reduced the requested number of Mk. VII’s to the July 1938 number of 70, before raising it again to 100 and finally to 220.

Production

After the Mk.VII was approved for production by the War Office, the use of light tanks encountered several obstacles. In 1940, the Battle of France was ongoing, and the Vickers Mk.VI, which was better suited for light security duties, fared poorly in combat against German armor and many of the Mk.VIs were abandoned after the Battle of Dunkirk. British tank production began to focus on infantry and cruiser tanks, phasing out light tanks. Vickers production slowed due to a transfer of the Mk.VII from the plant at Elswick, Newcastle-Upon-Tyne, to the Metro-Cammell factory in Birmingham mid-1940. This was further exacerbated by Luftwaffe raids, which resulted in damaged supply lines, and also by the vehicle’s design flaws, such as a faulty cooling system. These factors pushed back the first production example to November 1940, with around 100 Mk.VIIs being produced through 1942, according to War Office documentation. These 100 tanks were given registration numbers, T.9266 to T.9365. Other sources place the number as high as 177, but this number has not been proven in official documents. In September 1941, the Mk.VII was then given the name “Tetrarch”.


General Sir Alan Brooke inspects a Tetrarch at the Army Staff College at Camberley, 6th of January 1941. Source: Imperial War Museum Collection

Design

When the Mk.VII Tetrarch was initially designed, it was meant as an upgrade to the existing Vickers Mk.VI. The armor thickness was increased to a maximum of 16mm using riveted plating, and the Henry Meadows Ltd. Type 30 twelve-cylinder engine produced up to 165 hp. The Mk.VII rode on the Christie suspension system, which used long coil springs, and the tracks utilized four road wheels, which due to their size, also acted as supports for the track return. In addition, the Mk.VII also adopted the steering mechanism used by the Universal Carriers. Turning the tank was accomplished by warping or bending the tracks from side to side, in the direction desired, providing a turning radius of around 90 feet (27.4 meters), so for tighter turns track braking was still necessary. At 7.6 tons, the Mk.VII was capable of reaching travel speeds around 64km/h (40mph).

As with most scout tanks, the crew of three worked in tight quarters, with the commander and the gunner in the turret, flanking the driver. Due to the small number crew members, it fell to the commander to fill the role of loader. By 1944 the tanks were also upgraded with a 40mm Quick Firing 2 pounder, and some received Littlejohn adaptors, increasing the velocity and trajectory of the armor piercing composite non-rigid (APCNR) rounds fired. By using the APCNR, which had a softer metal on the outside, the slightly smaller Littlejohn adaptor would compress the round, provide some resistance, and increase the pressure behind the shot. The resulting velocity would increase from 853 m/s to 1,143 m/s, giving the 2pdr the ability to penetrate about 80mm of armor from about 150m.

Pictured here is the Tetrarch with a Littlejohn adapter fitted to the end of its barrel. The vehicle also has some small rubber flaps hanging from the front. Source: Imperial War Museum Collection

Variants

Despite the troubled production sequence of the Mk.VII, and the initial lack of support from the British Army in regards to its use, two variants of the Mk.VII were produced. The first was designated the Tetrarch I CS. With this variant, the 2-pounder was replaced with a 3-inch howitzer but otherwise was mostly unchanged. The second variant was the Tetrarch DD. This version mounted a Duplex Drive and canvas screens to enable flotation and water crossings. Trials were carried out in June of 1941 with the Tetrarch in the Brent Reservoir, as it was the lightest tank available to the British Army. Due to its success, the Duplex Drive was modified for mounting on Valentine tanks, and eventually M4 Medium tanks used during Normandy.

Fitted with the experimental flotation screen, Tetrarchs were the first British tanks tested for amphibious landings. Source: British National Archives

Operational History

The first groups to receive Tetrarch Mk.VIIs were the 1st Armoured Division and the 6th Armoured Division, but when these divisions were sent to the North African Campaign, the Tetrarchs were deemed unfit for service, due to faulty cooling systems, and never shipped with the divisions. The next British use came in 1941, in which twelve Tetrarchs were withdrawn from the 1st Armoured Division, and assigned to ‘C’ Squadron of the Special Service Squadrons. Six of these Tetrarchs were deployed to Freetown, West Africa. On the 5th of May 1942, with the start of Operation Ironclad in Madagascar, six ‘B’ Squadron Valentine tanks and six ‘C’ Squadron Tetrarchs were deployed as part of the amphibious assault at the port of Antsirane. Due to 75mm artillery emplacements and entrenched Vichy forces, the attacking British forces suffered the loss of four Valentines and three Tetrarchs, but eventually the objective was taken. By the end of the operation, only three of the twelve Tetrarchs were in running condition, and they remained stationed in Madagascar until 1943.

Tetrarch exiting a Hamilcar glider. Source: British National Archives

In 1940, the War Office and the British Army expressed a desire for airborne units to have access to heavier weaponry through the use of gliders. In January of 1941, the Tetrarch tank was paired with the General Aircraft Hamilcar, and three years later, training exercises began. Due to its success, the Tetrarch was re-designated as an airborne tank. On the 5th of June 1944, advance elements of the 5th Parachute Brigade landed and cleared the landing zone of anti-glider obstacles, so that the squadrons of the 6th Airborne Armoured Reconnaissance Regiment (AARR) could land on D-Day. Of the twenty tanks that took off for Normandy, one slipped free of its restraints and caused the glider to crash, two tanks collided upon landing, and another was hit by a landing Hamilcar glider. Eleven of the Tetrarchs also became entangled in the discarded parachutes, which took considerable time for them to be freed.

These delays in freeing the equipment, and the reorganization of airborne forces saved the Tetrarchs from having to engage the counter-attacking Kampfgruppe, ‘Von Luck,’ which contained Panzer IV’s. The next day, the Tetrarchs were ordered to move to Bois de Bavent, and reconnoiter Troarn-Caen. After linking up with the 8th Parachute Battalion in Bois de Bavent, they proceeded to assist with the British advance on Normandy, providing reconnaissance for the troops. The first area they scouted was Escoville, where they engaged enemy infantry and gun emplacements, but they were forced to rely on infantry support to engage German armor. For the remainder of the operation, the AARR was used to assist in infantry reconnaissance or to relieve troops under fire so that they could be effectively replaced by fresh soldiers. On the 31st of July, the 6th AARR was placed under the control of the 5th Parachute Brigade, and used as a rapid reaction force, and were instructed to assist with minor pushes before the breakout in August. Eventually, the Tetrarchs were relegated to HQ roles, while ‘A’ Squadron of the 6th AARR began using Cromwells. The 6th AARR was withdrawn from mainland Europe in early September, with casualties totaling 10 KIA, 32 wounded, and 10 MIA, out of the 118 deployed. This would be the final time the Tetrarchs saw combat, and the final time light tanks would be used in an airborne role in WWII.

Soviet Service

In June 1941, due to the start of Operation Barbarossa, the USSR was added to Britain’s Lend-Lease program. While the Lend-Lease was originally started as a method for the United States to provide aid, the British government also participated in giving aid and planned to send a fraction of the produced Tetrarchs to the USSR. Twenty tanks were delivered on the 27th of December 1941 in Zanjan, Iran, but no further deliveries were made. After crews were trained in their use, the tanks were transferred to the 151st Tank Brigade, and were used alongside the Soviet T-26. They fit into Soviet tank doctrine, who still used light tanks for scouting and combat roles, and eventually, they saw combat when the 151st Tank Brigade was under the command of the 47th Army on the Transcaucasian Front. During fighting near the Abin River on the 27th of January 1943, the 151st experienced fifteen bailouts (the crew abandoning the tank after it was hit) in their attempt to take a hill. By the 31st of January, only fourteen tanks were still operational, and on the next day of fighting, another six were lost. Even after recovery efforts, on the 1st of February 1943, the 47th Army had only nine working Tetrarchs, and by May, only seven remained running. Due to a lack of spare materials for repairs, the number continued to dwindle as the remaining tanks were transferred to the 132nd Tank Regiment and the 5th Guards Tank Brigade. By September, only two Tetrarchs remained, and they were retired in the autumn of 1943.

Tetrarchs in use by the 21st Training Tank Regiment in Shahumyan, Armenia. March 1942. Source: warspot.ru
Tetrarchs donated to the USSR pose for the camera alongside T-34 tanks in the Caucus mountains, 1942. Notice the infantrymen riding on the Tetrarchs. Source: As taken from WorldWarPhotos.info

Legacy

The invasion of Normandy was the last time the Tetrarchs were used in combat, however, they were not disbanded until around 1950. Declared obsolete in January 1946, their role as an airborne tank was gradually replaced by the M22 Locust, which was adopted by the British armed forces in 1943, relegating the Tetrarch to training roles for their remaining four years with the 3rd Hussars. Despite the short service life of the Tetrarch and the problems which occurred during development, it still secured a unique place in history for itself. The use of light tanks in airborne operations proved the versatility of armored vehicles and paved the path for future air transportable tanks. To this day, tanks are still airlifted and dropped off in hard to access locations on the battlefield and enable rapid deployment of armor to many different environments, an idea pioneered by the Light Tank Mk.VII.

Tetrarch Specifications

Dimensions (L-W-H) 13′ 6” x 7′ 7” x 6′ 11” (4.11 m x 2.31 m x2.12 m)
Total weight 16,800 pounds (7,600 kg)
Crew 3 (Commander, gunner, driver)
Propulsion Henry Meadows Ltd. Type 30 twelve cylinder engine, producing 165 hp
Speed (road) 19 km/h (11.8 mph)
Armament Ordnance QF 2-pounder (40mm) gun (or 3 in (76.2 mm) howitzer)
1 x 7.92mm BESA machine gun
Armor 4 to 16 mm
Total production 6 Prototypes
For information about abbreviations check the Lexical Index

Links, Resources & Further Reading

Chamberlain, Peter; Ellis, Chris (2001). British and American Tanks of World War Two: The Complete Illustrated History of British, American, and Commonwealth Tanks 1933–1945. Cassell & Company. ISBN 0-7110-2898-2.
Fletcher, David (1989). Universal Tank: British Armour in the Second World War – Part 2. HMSO. ISBN 0-11-290534-X.
Flint, Keith (2006). Airborne Armour: Tetrarch, Locust, Hamilcar and the 6th Airborne Armoured Reconnaissance Regiment 1938–1950. Helion & Company. ISBN 1-874622-37-X.
Pasholok, Yuri. The Hard Fate of a Light Tank. READ HERE
Ware, Pat. (2011).British Tanks: The Second World War: Rare Photographs from Wartime Archives. Barnsley, South Yorkshire: Pen & Sword Military, ISBN 2:00281436.
Williams, Anthony G. (1999). The Vickers 40mm Class S Gun with Littlejohn Adaptor. The Cartridge Researcher: European Cartridge Research Association, http://www.quarryhs.co.uk/sgun.htm

Light Tank T1 “Cunningham”

U.S.A. (1927-32)
Light tank – 6 Prototypes

Up to the late 1920s, the United States military had relied on tank designs from overseas. This included the Tank Mk. VIII “International Liberty”, a World War One rhomboid style tank co-produced with the United Kingdom and the French designed Renault FT, known as the Light Tank M1917 in American service.

The M1917 served well into the 1920’s with the US Military. In 1927 the US Army designed a new tank to be built by James Cunningham, Son, and Company based in Rochester, New York (they were the first car company in the World to produce an automobile with a V8 engine). This tank was the Light Tank T1, sometimes known as the “T1 Cunningham”. It would be one of the United State’s first modern home built tanks.

“What is a modern tank?” You may well ask. The Renault FT is often considered to be the first modern tank, as since its appearance, tanks have more or less followed its general layout.This being a fully rotating turret, and separate crew and engine compartments. The T1 was America’s first tank to follow this design.

Development

The T1 was developed between 1927 and 1932, and would go through seven variations from T1, to T1E6. Each variation would go through upgraded weaponry, engine performance, and suspension.

The anatomy of the T1 remained mostly the same through its various versions. It’s characteristics were a rear mounted turret, an engine positioned in the front, and rear mounted drive sprockets. The exceptions were the E4 and E6 models. In these models, the turret was relocated to the center of the tank, the engine to the rear and the drive sprockets to the front.

Armament was constant. The tank carried a 37mm (1.46 in) Gun, with a coaxial M1919 .30 Cal. Machine Gun mounted in the fully rotatable hand cranked turret. The armament was mounted slightly to the right of the center line. The tank had a crew of two consisting of Commander and Driver in a set up similar to the M1917/Renault FT Light Tank. The Commander was located in the turret, and also performed the role of Gunner and Loader. It was his responsibility to service the main armament. The driver was located just in front of him.

The T1 taking part in training. Photo: As taken from worldoftanks.ru

T1 to T1E6

T1: The T1 made its first appearance in 1927 as a single prototype. Its main armament was the 37mm Short Tank Gun M1918. This gun was a US development of the Canon d’Infanterie de 37 modèle 1916 TRP, a low-velocity French Infantry Support Gun that was used in the First World War. The turret was roughly conical, with the roof sloping towards the gun. The T1’s armor ranged from 6.4mm (0.25 in) to 9.5mm (0.37 in) and was powered by a Cunningham water-cooled V8 gasoline engine, rated at 105 hp. This gave a top speed of 20 mph (32 km/h). It had an unsprung suspension, using equalizing links between the bogies to soften impacts, even so, it would have been an extremely rough ride over hard terrains. The tank weighed 7.5 tons.

The first model, T1. Photo: Public Domain, U.S. Army, Ordnance Department

T1E1: The T1E1 followed the original vehicle in 1928, there were few changes. The only major alterations consisted of the hull no longer extending beyond of the forward idler wheels, and the relocation of the fuel tanks to above the tracks. Speed was also reduced to 18 mph (29 km/h). Steering was achieved with a simple clutch-brake steering system. Four of these vehicles were produced making them the only T1s to see any kind of series production. The vehicle soon received the standardization designation of Light Tank M1, this was soon revoked, however.

The T1E1. Photo: Public Domain, U.S. Army, Ordnance Department

T1E2: Like its T1 predecessor, only one T1E2 prototype was built. It saw some major changes to its offense and defense. The E2’s armor was increased to 15mm (0.625) thick, raising the tank’s overall weight to 8.9 tons. The armament was also exchanged for a Browning 37mm Auto-Cannon, which had much higher velocity than the standard M1918 gun. It is thought this gun may have been a long barreled version of the M1924. The armament was later reverted, however, with the M1918 37mm Gun being reintroduced. A new turret was introduced that was completely conical with a flat, rimmed top. It almost had the appearance of a top hat, the E2 was the only version of the tank to have this turret. The Cunningham V8 engine had its power boosted to 132 hp, giving the tank a better power-to-weight ration. Maximum speed was only 16 mph, however, due to gear ratio changes.

T1E2 with the improved turret. Photo: Public Domain, U.S. Army, Ordnance Department

T1E3: The E3 was a further development of one of the four T1E1s. This variation was brought in 1930 by the US Ordnance Department. It could be considered as somewhat of a ‘Tankenstein’, as it was made up of a combination of parts from the T1E1 and T1E2. It was armed with the Browning Auto-Cannon, had thickened armor and more powerful engine of the E2, but kept the E1’s turret, hull and gear ratios. The E1’s gear ratios combined with the E2’s more powerful engine again increased the Tanks power-to-weight ratio, and increased the top speed to 21.9 mph (35.2 km/h). The major change to T1E3 came with the suspension, which was completely redesigned and featured hydraulic shock-absorbers and coil-springs. This gave a much smoother ride and better cross-country performance than the springless suspension of the previous models.

The T1E3 with the long barreled 37mm Browning gun. Photo: Public Domain, U.S. Army, Ordnance Department

T1E4: The T1E4, introduced in 1932, was a complete metamorphosis compared to the previous models of the T1. The layout of the vehicle was changed to having a centrally mounted turret, engine in the rear and sprocket wheels at the front. It had a new suspension based on the British Vickers 6-ton Light Tank, which the US Army had previously tested. This suspension consisted of semi-elliptic leaf-springs on articulated four-wheel bogies. The vehicle was now longer than the original 12 ft 6 in (3.810 m) of the T1 at 15 ft 5 in (4.70 m). Armament was changed to the short barrel version of the M1924 Gun. The E4, at first, retained the E1’s engine. This soon proved to be underpowered so it was replaced with another upgrade Cunningham V8 rated at 140 hp, giving the tank a top speed of 20 mph (32 km/h).

The T1E4 with the improved, Vickers derived, suspension. Photo: Public Domain, U.S. Army, Ordnance Department

T1E5: The E5 came along around same time as the E4, and was a further development of one of the T1E1 Prototypes. This model was fitted with a new steering system. Up until this model, the T1s had all used Clutch-Brake steering, which led to overall power loss when traversing the hull. This was replaced by a controlled differential steering system, otherwise known as a ‘Cletrac’ system named after the Cleveland Tractor Company who produced it. It worked by slowing down the wheels on one side of the tank, letting the faster side to swing in the direction required. Testing concurred that this was a much better method than the original Clutch-Brake, especially at higher speeds. US Ordnance promptly recommended its use for all future tracked vehicles that could exceed a speed of 6 mph (10 km/h). It is still used today on the M113 APC. The E5 was given the same Cunningham 140 hp V8 engine as the E4.

T1E6: T1E6 was the final T1 variant. This was a further development of the E4, with Cunningham Engines removed altogether. The 140 hp Cunningham V8 was replaced by a 244 hp V12, made by the American-LaFrance & Foamite Corporation, based in Summerville, South Carolina. This engine barely squeezed into the tanks engine bay, and increased the weight to 9.95 tons, even with the more powerful engine, the speed remained a controlled 20 mph (32 km/h). The T1E6 retained the M1924 main armament of the T1E4, with the same thickness of armor. However, this time it ranged from 9.5mm (0.375 inches) to 15.9mm (0.625 in).

T1E6, the final model. Photo: Public Domain, U.S. Army, Ordnance Department

Fate

The tank would never see mass production with the four T1E1s being the most tanks in the series built. The T1 was dropped in favor of a new design by the Rock Island Arsenal, the T2. The T2 would later go onto become the Combat Car/Light Tank M1, and would pave the way for famous American light tanks such as the M3 and M5 Stuart.

Just one of the Cunningham T1 survives today. The tank had previously sat (unarmed) on outdoor display at the U.S. Army Ordnance Museum at Aberdeen Proving Ground in Aberdeen, Maryland. However, when the museum closed in 2010, it was moved to the U.S. Army Ordnance Training and Heritage Center at Fort Lee, Virginia. It remains there in indoor storage, out of public display.

The tank spawned one variant, the 75mm Howitzer Motor Carriage (HMC) T1. This was a turretless T1 hull, armed with the M1 75 mm Pack Howitzer. This also stayed a prototype, with just one model built.

Links, Resources & Further Reading

Osprey Publishing, New Vanguard #245: Early US Armor, Tanks 1916–40
Presidio Press, Stuart – A History of the American Light Tank, R.P. Hunnicutt
Merriam Press, Development of Armored Vehicles Volume 1: Tanks, Ray Merriam
T1 on the Armored Vehicle Database

Light Tank T1 (T1E1) Specifications

Dimensions (L-W-H) 12″ 8.5′ x 5″ 10.5′ x 7″ 1′ (3.8 x 1.7 x 2.1 m)
Total weight, battle ready 8.3 tons
Crew 2 (Driver, Commander)
Propulsion 110 hp, Cunningham V8.
Speed (on/off road) 18 mph (29 km/h)
Armament M1918 37mm Tank Gun,
Browning M1919 .30 Cal (7.62mm) Machine Gun
Total production 4 T1E1s, 6 prototypes in general
For information about abbreviations check the Lexical Index